Royal Melbourne HospitalSubscribe to Royal Melbourne Hospital

People with epilepsy acquired following brain trauma are the focus of a new $28 million global push for a long-awaited research breakthrough to develop treatments that for the first time could prevent or mitigate this disabling and potentially life-threatening condition.

 

Eminent scientists, Nobel Laureate Professor Peter Doherty and Professor Sharon Lewin, have called for an increased level of collaboration and more funding for research to fight infectious diseases across the globe.

Australia´s capacity to play a lead role in the global response to known and emerging infectious diseases has been boosted enormously with the launch of the Doherty Institute in Melbourne today.

Coinciding with the launch of a dedicated Lung Health Research Centre, researchers at the University of Melbourne have discovered a new insight into the unexplained link between lung infections, emphysema and lung cancer.

Up to 50 per cent of women aged between 16 – 25 years may be putting themselves at risk of chronic illness and disease because of their lack of sun exposure.

Cancer researcher and haematologist Professor Andrew Roberts has been named the inaugural Metcalf Chair of Leukaemia Research, a joint appointment between The University of Melbourne, the Walter and Eliza Hall Institute of Medical Research and The Royal Melbourne Hospital.

A small device implanted in the brain has accurately predicted epilepsy seizures in humans in  a world-first study led by Professor Mark Cook, Chair of Medicine at the University of Melbourne and Director of Neurology at St Vincent’s Hospital.

How well people with newly diagnosed epilepsy respond to their first drug treatment, may signal the likelihood that they will continue to have uncontrolled seizures according to University of Melbourne Chair of Neurology Professor Patrick Kwan.

Brain damage continues to develop and evolve for months after a traumatic brain injury (TBI), revealing a potential target for treatments to improve brain trauma, new research led by the University of Melbourne has found.

Scientists at The Royal Melbourne Hospital and the University of Melbourne have discovered the cells that cause a common type of childhood leukaemia – T cell Acute Lymphoblastic Leukaemia (T-ALL). Targeting of these cells may lead to improved treatments for this disease and help prevent relapse.

The team, led by Dr Matthew McCormack and Dr David Curtis of the Rotary Bone Marrow Research Laboratories and the University’s Department of Medicine at The Royal Melbourne Hospital, made the discovery whilst studying mice prone to developing this leukaemia.

The results have been published online today by the prestigious international journal Science.

The team found that with irradiation treatment in animal models, over 99 per cent of cells in the thymus were killed, but these stem cell-like cells persisted and rapidly recovered. This suggests that these cells may survive therapy and be responsible for relapsed disease following treatment.

Currently, children with T-ALL are given extended therapy over two to three years in an attempt to stop a relapse. More targeted therapy on the thymus cells could reduce the length and toxicity of treatment and prevent relapse.

Dr McCormack, a leading international expert on childhood leukaemia, said: “The cellular origins of this leukaemia are not well understood. Our discovery that these cells are similar to normal stem cells explains why they are capable of surviving for long periods. It also explains why they are remarkably resistant to treatment.”

Approximately 50 new cases of T-ALL are diagnosed every year in Australia, two thirds of these in children or adolescents. Adults also contract T-ALL, and the majority succumb to resistant or relapsed disease.


Dr Curtis, a Clinical Haematologist and head of the Leukaemia Research Program at The Royal Melbourne Hospital, said: “The identification of these cells provides an important target for the development and testing of new treatments for patients with T cell Acute Lymphoblastic Leukaemia.”

The team will now focus on novel treatments capable of killing these cells, which may lead to clinical trials within the next five years.

The research also involved Walter & Eliza Hall Institute of Medical Research and Leeds Institute of Molecular Medicine, UK.

The research was supported by the National Health and Medical Research Council of Australia, Cancer Council Victoria, Leukaemia Foundation of Australia and the Fight Cancer Foundation (BMDI).

Pages